

Microtrac <u>Total Solutions in Particle Characterization</u>

Dr. Thomas Benen, Microtrac GmbH

Microtrac Company History

1970 - 1974 Leeds and Northrup

Research into new applications of laser industrial products. Release of first commercially available Particle Size Analyzer using laser diffraction in 1974.

1974 - 1996

Microtrac commercially produced by Leeds and Northrup until 1996 when **Honeywell** purchased Leeds and Northrup.

2000

Microtrac product line acquired by **Nikkiso** (\$1.2 bn turnover) to form Microtrac Inc.

2015

Foundation of Microtrac GmbH, Krefeld, Germany, to foster EMEA region.

>45 Years Light Scattering Experience and Technology

Particle characterization in tribology

Measure Particles from abrasion (wear)

Abrasion particles from orthopaedic implants, REM images, a) 1-20 μm b) 0.1-3 μm (source: DGOU / MHH website)

Measure deliberately added particles (additives)

Current Applied Physics

Volume 9, Issue 2, Supplement, March 2009, Pages e124-e127 Nano Korea 2008 Symposium

Tribological behavior of copper nanoparticles as additives in oil

Y. Choia, C. Leea, Y. Hwanga, M. Parka, J. Leea, A. C. Choib, M. Jungb

Procedia Engineering

Volume 102, 2015, Pages 1038-1045

New Paradigm of Particle Science and Technology Proceedings of The 7th World Congress on Particle Technology

Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles *

Qingming Wan a, b, c, Yi Jin a, c, A, Pengcheng Sun a, Yulong Ding a, c

Some Particle Sizing techniques

- Dynamic Light Scattering (DLS) Brownian Motion → Doppler Effect (Frequency Shift) of scattered light. ISO recommendation 1nm-1μm
- Laser diffraction granulometry angle-dependent scattering (a form of Static light scattering). ISO recommends 100 nm-3mm for red lasers and blue lasers to extend <100nm
- Image Analysis Optical Microscopy (static or Dynamic)

Microtrac Solutions Overview

0.3 nm Size 127 mm

ZP and MW Shape/Morphology

Surface Area/ Porosity

Pioneers of Particle Characterization

Microtrac Technologies

- Dynamic Light Scattering Nano-Materials 0.3 nm to 10 μm
- Laser Diffraction Particle Size Analysis 10 nm to 2.8 mm
- Image Analysis Particle size and shape analysis 1 μm 127 mm
- Surface Area/Adsorption Gas and Chemisorption, BEL products

Microtrac/BEL Surface Area Analysis Portfolio

Adsorption Analysis

- Strategic Alliance between Microtrac and BEL Belsorp Mini and Max –Surface Area and Pore Size Analysis
- BELCAT Catalyst applications
- Custom built Adsorption and Chemisorption solutions
- manufacturing in US and Japan.

Patented AFSM technology

Dynamic Light Scattering – concept

- Suspended particles exhibit brownian motion
- Velocity distribution of particles determined by particle size
- Light scattered from moving particles measures particle velocity distribution

THE SOLUTION FOR NANOMETER PARTICLE SIZING

Controlled Reference – signal amplification for low concentrations

A MEMBER OF NIKKISO

180° detection angle for High Concentrations

→ Highest possibly concentrations with 180° backscattering

Limit: Free Brownian Motion of particles (beyond 10-40% w/v)

Lower limit of detection: Practical test

Au₆₈ gold nanocluster of 68 gold atoms d=1.6nm

Peaks Summary		
d(nm)	Vol%	Width
1.36	100	0.7

Measurable down to 0.1% w/v

Microtrac's Dynamic Light Scattering Portfolio

Dynamic Light Scattering

Particle Size Distribution Analysis – 0.3 to 6500 nm

- Nanotrac Wave II
- Nanotrac Wave II Q
- NANO-flex
 - Zetrator

- Patented Controlled Reference Method
- Unique Probe Technology
- Heterodyne signal processing (Frequency Shift Analysis instead of PCS
- wide concentration measurements
- Zeta Potential measurements with titration (up to 5 pumps)
- Molecular Weight Hydrodynamic and Debye plot
- Concentration determination
- Temperature Control
- Auto sampling option

Particle Size integration into reactors - in-line

Laser diffraction - concept

- Large particles result in a high scattering intensity at relatively narrow angles to the incident beam
- smaller particles produce a lower intensity signal at much wider angles
- Laser diffraction analyzers determine particle size from the recorded angular dependence of the intensity of light scattered by a sample, using an appropriate theory of light behavior

Microtrac's Laser Diffraction Portfolio

Laser Diffraction

Particle Size Distribution Analysis – 0.01 to 2800 microns

- S3500
- Bluewave
- TRI-BLUE
 - Turbotrac
 - SDC
 - USVR

- Wet and Dry mode
- Patented Tri Laser Systems
- Use of coherent lasers (red and blue)
- Unique non-spherical measurement algorithm
- Integrated Image Analysis size and shape

Microtrac's Patented 3-Laser Design – Detection 0.02-163°

Modified Mie – Patented By Microtrac

Diffraction lower size limit – Bluewave&Triblue

405 nm Blue Lasers Provide for

- High Intensity High Signal Processing
- Coherent Light Sourdce Accuracy
- 10X Greater Submicron ttering Efficiency

 High Sensitivity
- Detection up to 163°
 - Accuracy well below 100 nm

12 nm Ludox sample

Integrated Laser Diffraction With Dynamic Image Analysis

- Visually validate your material
- Identify variations = proactive
- >25 morphological parameters
- LD Size 10 nm to 2800μm
- DIA Morphology 3 to 2000μm

Concept in Image Analysis

- <u>Photos</u> of individual particles are digitized, stored in a viewable image file
- Based on the size of a pixel, dimensions are measured
- Further calculations are performed for characterization
- Static IA Microscopy
- Dynamic IA Particles in motion

How Does It Work?

Particle detection – 1 micron pixel

Area = Count the pixels or portions covered by the particle shadow.

Perimeter = Measure along the sides

Microtrac's Morphological Parameters

Size

Da
Dp
FLength
FWidth
FThickness
ELength
EWidth
EThickness
Area
Volume
Perimeter
Surface Area
CHull Area
CHull Surface Area

Form

Sphericity
Circularity
Angularity
Roundness
Compactness
Extent
Ellipse Ratio
W/L Aspect Ratio
T/L Aspect Ratio
L/T Ratio
L/W Ratio
T/W Ratio
W/T Ratio

Surface Roughness

Convexity Solidity Concavity

Other

Transparency
Curvature
ID
Img ID

Microtrac's PartAn-SI For Wet Measurements

S3500 or Bluewave

Imaging SI

PartAn SI modular design allows connection to any S3500, Bluewave or TRI-BLUE

SDE

Visual Validation – Glass Beads Application

Scattergram And Other Graphs

- 1. Diffraction data show change in size or distribution.
- 2. Start SI Unit to evaluate for particle shape changes aspect ratio, circularity., maximum length, minimum length, Legendre dimensions, etc.

Benefits of Integrated Dynamic Image Analysis

Crystals

Benefits of Integrated Dynamic Image Analysis

Agglomerates

Benefits of Integrated Dynamic Image Analysis

Over-Grains

Microtrac PartAn SI PRO Online

Selected users

Massachusetts Institute of Technology

Microtrac's unique technologies

- Nanometer: Superior DLS technology (Frequency Power Spectrum) in 180° with Reference Beating instead of PCS. In-line / On-line capability.
- Nano-/Micrometer: Simultaneous combination of laser diffraction with quantitative Dynamic Imaging
- Micro-/Millimeter: Patented 3D imaging with >30 morphological parameters
- High-end BET analysis for surface analysis ("BEL")

Microtrac business fields

- Instrument sales
- Contract analysis
- Training in particle characterization
- Partner in F&E projects / grants

Contact

Microtrac Europe/EMEA:

Microtrac GmbH, Krefeld, Germany

Microtrac headquarters:

Microtrac Inc, Montgomeryville, PA, USA

thomas.benen@Microtrac.com

www.microtrac.de

